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15.053             February 22, 2007 

z Introduction to the Simplex Algorithm 



Quotes for today 

Give a man a fish and you feed him for a day. Teach 
him how to fish and you feed him for a lifetime. 

-- Lao Tzu 

Give a man a fish dinner, and he will forget it by 
next week.  Let a person catch the fish for 
himself, and he’ll remember it for a lifetime. 

-- Jim Orlin 
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Preview of the Simplex Method 

1 2 3 4 5 6 

1 

2 

3 

4 

5 

K 

S 
Start at any feasible corner point. 
Move to an adjacent corner point with 
better objective value.  
Continue until no adjacent corner point 
has a better objective value. 

Maximize z = 3 K  + 5 S 

This is a picture of the simplex algorithm in inequality form.  In this form, the 
simplex algorithm moves from corner point to corner point. And each corner point 
is the intersection of two constraints. 

When we move to equality form, the simplex algorithm still moves from corner 
point to corner point.  And the corner points are still found  by solving a system of 
equations.  So, there are many similarities. 



4 

The simplex algorithm (for max problems) 
Start with a feasible 
corner point solution 

Is it 
optimal? 

quit with 
optimal solution 

Is the optimum 
unbounded 

from above? 

quit with 
proof of 

unboundedness 

find an 
improved 

corner point 
solution 

No 

Yes 

No 

Yes 

As you can see, this is a fairly simple structure.  At the same time, it may be 
difficult to keep everything in one’s head at the same time.  That is where the two 
dimensional example can help out. 

We will assume that we start with a feasible corner point solution.  That 
immediately raises two questions.  What does a corner point solution look like? 
And how do you find a corner point solution to start with?   Both of these issues will 
be addressed shortly. 

The next slides deal with something even more preliminary.  We will be assuming 
that we start with a linear program with equality constraints and non-negativity 
constraints, and nothing else. So we need to get each linear program into the correct 
starting form. We will show how to do that on the next few slides. 



Goals for this lecture 

Major Issues of the Simplex Algorithm 

1.	 How does one get the LP into the correct starting 
form? 

2.	 How does one recognize optimality and 
unboundedness? 

3.	 How does one move to the next corner point 
solution? 

Note: we will derive the simplex algorithm in class! 
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Linear Programs in Standard Form 

We say that a linear program is in standard form if the following 
are all true: 

1. Non-negativity constraints for all variables. 
2. All remaining constraints are expressed as  equality 

constraints. 
3. The right hand side vector, b, is non-negative. 

maximize z = 3x1 + 2x2 - x3 + x4 

x1 + 2x2 + x3 - x4 ≤ 5 ; 

-2x1 - 4x2 + x3 + x4 ≤ -1; 

x1 ≥ 0, x2 ≥ 0 

An LP not in Standard Form 

not equality 

not equality 
x3 and x4 may be negative 

Excel Solver does not require that you write an LP in standard form because it will 
immediately transform it to standard form via software.  We show next what linear 
programming solvers do with an LP that does not start in standard form. 



Converting Inequalities into Equalities 
Plus Non-negatives 

Before After

x1 + 2x2 + x3 - x4 ≤ 5 x1 + 2x2 + x3 - x4 +s1 = 5


s1 ≥ 0 

s1 is called a slack variable, which measures the amount 
of “unused resource.” 

Note that s1 = 5 - x1 - 2x2 - x3 + x4. 

To convert a “≤” constraint to an 
equality, add a slack variable. 

So, we transform a “≤ constraint” by 
1. adding a slack variable 
2. requiring that the slack variable is non-negative. 
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Converting RHS and “≥” constraints  
z	 Consider the inequality -2x1 - 4x2 + x3 + x4 ≤ -1; 

z	 Step 1. Eliminate the negative RHS.  Multiply by -1. 

2x1 + 4x2 - x3 - x4 ≥ 1 

z	 Step 2. Convert to an equality 

2x1 + 4x2 - x3 - x4 – s2 = 1 

s2 ≥ 0 

z	 The variable added will be called a “surplus
variable.” 

To convert a “≥” constraint to an 
equality, subtract a surplus variable. 

We get rid of negative right hand sides by multiplying through by -1. 

We transform a “≥ constraint” by 
1. 	adding a surplus variable 
2. 	requiring that the slack variable is non-negative. 

To be honest, I sometimes confuse the names “slack” and “surplus” because they 
are serving the exact same function, converting an inequality constraint to an 
equality constraint.  They have different names because of their interpretations in 
practice.  Often a “≤ constraint” will model a case in which we have limited 
resources, and the “slack” represents the amount left over.  Often a “≥ constraint” 
will model a case in which we have to produce at least a specified amount.  If we 
produce more than we need, we are said to have produced a surplus. 
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Converting Max to Min and Min to Max


Converting Max to Min: multiply objective by -1 

Example: Minimize z = 3x1 + 2x2 

subject to “constraints” 

Has the same optimum solution(s) as 

Maximize v = -3x1 - 2x2 
subject to “constraints” 

Minimizing z is equivalent mathematically to maximizing –z.  Interestingly, 
practitioners often have a very strong preference.  If you tell a practitioner that you 
are maximizing the negative of the cost, it will sound very confusing, unless you 
convert it somehow to maximizing profit.  But mathematically, there is no important 
distinction. 
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Other transformations 

See tutorial on transformations. 

Why standard form? 

The simplex method is designed for problems with 
equality constraints and non-negativity constraints. 

The tutorial covers situations in which a variable x does not start with the constraint 
x ≥ 0. It is possible that in a model, some variables are constrained to be non-
positive, and possibly other variables have no constraint on sign at all.  In all of 
these cases, the LP solver will first create an equivalent program in which all 
variables are constrained to be non-negative. 
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Review: solving a system of Equations 

2x1 + 2x2 + x3 = 9 

2x1 - x2 + 2x3 = 6 

x1 - x2 + 2x3 = 5 

5=2-11Equation 3 

6=2-12Equation 2 

9=122Equation 1 

RHSx3x2x1 

The set of equations with the x’s written in the top row is called a tableau.  We will 
use tableaus to illustrate the simplex algorithm. 



                 
                  
                5=2-11

6=2-12
9=122

1
0
0
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Equation 3 
Equation 2 
Equation 1 

RHSx3x2x1 

1 1 1/2 = 9/2 
0 -3 1 = -3 
0 -2 3/2 = 1/2 

Divide through equation 1 by 2. 

Subtract two times equation 1 from equation 2. 

Subtract equation 1 from equation 3. 

We want column 1 to be 
1 
0 
0 

For more information on solving systems of equations, see the tutorial on the 
website. 



                     
                    

                    

1/2=3/2-20
-3=1-30
9/2=1/211

0
1
0
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Equation 3 
Equation 2 
Equation 1 

RHSx3x2x1 

0 1 -1/3 = 1 
0 0 5/6 = 5/2 

1 0 5/6 = 7/2 

We want column 2 to be 
0 
1 
0 

Divide through equation 2 by -3. 

Subtract equation 2 from equation 1. 

Add two times equation 2 to equation 3. 



                       
                       

                       

5/2=5/600
1=-1/310

7/2=5/601

0
0
1
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Equation 3 
Equation 2 
Equation 1 

RHSx3x2x1 

We want column 3 to be 
0 
0 
1 

0 1 0 = 2 
0 0 1 = 3 

1 0 0 = 1 

Divide through equation 3 by 5/6. 

Subtract equation 3 from equation 1. 

Add 1/3 times equation 3 to equation 2. 



                       
                       

                       

    

5/2=5/600
1=-1/310

7/2=5/601
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Equation 3 
Equation 2 
Equation 1 

RHSx3x2x1 

0 1 0 = 2 
0 0 1 = 3 

1 0 0 = 1 

Resulting equations x1 = 1, x2 = 2, x3 = 3. 

The solution is now obvious. 

The system of equations is in a very special form. 

At the end, each column for a variable has a single 1 and two 0s.  
The equations themselves are the same as the solution. 



1. Start with a feasible corner point solution 

z Start with a tableau in “canonical form” 

– LP has equality constraints and non-negativity 
constraints. 

– There is one “basic” variable for each equality 
constraint. 

– The column for the basic variable for 
constraint j has a 1 in constraint j and 0’s 
elsewhere. 

– The remaining variables are called non-basic. 

Standard form does not necessarily give a corner point solution. But standard form 
is a good place to get started. 

For a corner point solution, 
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LP has equality constraints and 
non-negativity constraints.
There is one “basic” variable for
each equality constraint.
The basic variables are x1, x3, and x4.  
They have a column that has one 1 
and all other components are 0

A “Tableau” in canonical form.


x1 x2 x4x3z x5 

=-12 1 400 0 

12 001 = 20 

The non-basic variables are x2 and x5. 
z is considered to be a basic variable. 

If we got rid of the non-basic variables (as in erasing the columns for x2 and x5), 
then the resulting equations would be the same as the solution. That is, the 
equations would be x3 = 4, x4 = 1, x1 = 3. In reality, we don’t erase the columns.  
We just set the non-basic variables to 0, which is mathematically equivalent. 

17 

12-1 0 10 =0

336 00 =1 0
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The “basic feasible solution” or bfs  

x1 x2 x4x3z x5 

12 001 = 20 

12-1 0 10 =0 

336 00 =1 0 

The basic variables are x1, x3, x4, and z 

The non-basic variables are x2, x5 

Set the 
non-basic 
variables 

to 0 

The basic feasible solution (bfs) is: 
x2 = x5 = 0; x1 = 3, x3 = 4, x4 = 1, z = 2 

We will use the term “basic feasible solution” or “bfs” throughout the rest of the 
semester.  Every bfs is also a corner point solution, in that it is not the midpoint of a 
line segment joining two other solutions. 

The simplex method will move from corner point to corner point along edges.  

-12 1 400 0
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maximize z = -2x2 – x5 + 2 

subject to x1 = 3, x3 = 4 ,x4 = 1 

x1, x2, x3, x4, x5 ≥ 0 

An example 

What is an optimal solution for this problem? 

Together we 
will derive the 
optimality 
conditions 

When is a basic feasible solution 
(bfs) optimal? 

The first example is an LP in which 
1. The objective function only has terms for the nonbasic variables. 
2. The coefficients of the variables in the objective function are nonpositive and 
only involve the nonbasic variables. 
3. The only constraints on the non-basic variables are nonnegativity constraints. 

So, all one needs to do is to set x2 and x5 optimally, which in this case sets them 
both to 0. 
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maximize z = -2x2 – x5 + 2 

subject to x1 = 3 – 6x2 – 3x5 

x3 = 4 – 2x2 + x5 

x4 = 1 + x2 – 2x5 

x1, x2, x3, x4, x5 ≥ 0 

A second example 

What is an optimal solution for this problem? 

The second example is an LP in which 
1. The objective function only has terms for the nonbasic variables. 
2. The coefficients of the variables in the objective function are nonpositive and 
only involve the nonbasic variables. 
3. Setting the nonbasic variables to 0 gives a feasible solution. 

In this case, setting the nonbasic variables to 0 gives a feasible solution with z = 2.  
And any other solution has x2 ≥ 0 and x5 ≥ 0, and thus z ≤ 2. So, the solution 
with the nonbasic variables set to 0 must be optimal. 

So, all one needs to do is to set x2 and x5 optimally, which in this case sets them 
both to 0. 
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When are sufficient conditions for a solution 
to be optimal? 

maximize z = -2x2 – x5 + 2 

subject to x1 = 3 – 6x2 – 3x5 

x3 = 4 – 2x2 + x5 

x4 = 1 + x2 – 2x5 

x1, x2, x3, x4, x5 ≥ 0 

A solution x1, x2, x3, x4, x5 is guaranteed to be 
optimal for an LP with non-negativity 
constraints whenever ….. 

The objective function has the following properties: 
1. The coefficients of the nonbasic variables are nonpositive 
2. The coefficients of the basic variables are 0. 

And the feasible solution x is obtained by setting the nonbasic variables to 0. 
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Recognizing an Optimal bfs: Tableau Version 

x1 x2 x4x3z x5 

12 001 = 20 

1= 

= 

The basic feasible solution (bfs) is: 
x2 = x5 = 0; x1 = 3, x3 = 4, x4 = 1, z = 2 

It is optimal! 

maximize z = -2x2 – x5 + 2 s.t. x ≥ 0 

The opt solution is z = 2. 

= 

2-1 0 10 0 

336 00 1 0 

-12 1 400 0 

In the tableau form, the objective is written as 
z + 2x2 + x5 = 2. 

Optimality conditions for a bfs in tableau form: the coefficients in the z-row 
nonnegative for the nonbasic variables. 

Note that tableaus that correspond to bfs’s already have the following properties: 
1. The coefficients of the basic variables in the objective function are 0 
2. There is a feasible solution obtained by setting the nonbasic variables to 0. 

Thus the optimality condition stated above for a bfs in tableau form are the same as 
from the previous slides. 
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Optimality Conditions 

x1 x2 x4x3z x5 

12 001 = 20 

1= 

= 

Important 
Fact. 
If there is no 
negative 
coefficient 
in the z row, 
the basic 
feasible 
solution is 
optimal! 

maximize z = -2x2 – x5 + 2 

= 

2-1 0 10 0 

336 00 1 0 

-12 1 400 0 
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Is the optimum 
unbounded 

from above? 

maximize z = -2x2 + x5 + 2 

subject to x1 = 3, x3 = 4 , x4 = 1 

x1, x2, x3, x4, x5 ≥ 0 

An example 

What is an optimal solution for this problem? 

Together we will 
derive the 
conditions for 
unboundedness. 

The objective function (for a max problem) in this example satisfies the following 
conditions: 

1. The coefficients of the basic variables in the objective are 0 
2. There is a positive coefficient in the objective for a nonbasic variable 
3. The only constraints on the nonbasic variables are nonnegativity constraints. 

In this case, we can get a sequence of increasingly better solutions by making x5 
increasingly larger. 
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maximize z = -2x2 + x5 + 2 

subject to x1 = 3 – 6x2 + 3x5 

x3 = 4 – 2x2 + x5 

x4 = 1 + x2 + 2x5 

x1, x2, x3, x4, x5 ≥ 0 

A second example 

What is an optimal solution for this problem? 

The objective function (for a max problem) in this example satisfies the following 
conditions: 

1. The coefficients of the basic variables in the objective are 0 
2. There is a positive coefficient in the objective for the nonbasic variable x5. 
3. For any fixed choice of x5 > 0, there is a feasible solution in which the only 
positive variables are x5 and the current basic variables. 

In this case, we can get a sequence of increasingly better solutions by making x5 
increasingly larger. 
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maximize z = -2x2 + x5 + 2 

subject to x1 = 3 – 6x2 + 3x5 

x3 = 4 – 2x2 + x5 

x4 = 1 + x2 + 2x5 

x1, x2, x3, x4, x5 ≥ 0 

Directions of Unboundedness 

Let x5 = Δ. Let x2 = 0. 

Assume that Δ ≥ 0 

Then x1 = 3 + 3 Δ 
x3 = 4 + Δ 
x4 = 1 + 2Δ 
z = Δ 

⎛ ⎞  
⎜ ⎟  
⎜ ⎟  

= + Δ⎜ ⎟  
⎜ ⎟  
⎜ ⎟
⎜ ⎟
⎝ 

⎛ ⎞  
⎜ ⎟  
⎜ ⎟  
⎜ ⎟  
⎜ ⎟  
⎜ ⎟
⎜ ⎟
⎝ ⎠⎠ 

3 
0 
1 
2 
1 

3 
0 
4 
1 
0 

x 

Direction of 
unboundedness 

When the solution is unbounded from above, we often keep track of the sequence of 
solutions whose objective is unbounded from above.  This can be done very 
efficiently by storing a feasible x’ solution and a direction of unboundedness y’.  
Then for every value of Δ, the solution 
x’ + Δy’ is feasible.  As Δ gets increasingly larger, the objective for x’ + Δy’ gets 
increasingly larger, and approaches infinity in the limit. 



More on Directions of Unboundedness 

A vector y is called a direction of unboundedness for a 
maximization problem if 

1. For all feasible solutions x and all positive numbers 
Δ, the vector x + Δy is feasible. 

2. The objective value for y is positive. 

Fact: an LP is unbounded from above if and 
only if there is a feasible solution and there is 
also a direction of unboundedness. 

The property of direction of unboundedness is true for linear programs, but is not 
true for non-linear programs.  For example, one could imagine a feasible region in 
two dimensions that is a spiral, and that the objective goes to infinity as one moves 
along the spiral. But there is no direction of unboundedness as defined on the slide. 
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Unboundedness: Tableau Version


x1 x2 x4x3z x5 

=-12 1 400 0 

-12 001 = 20 

1-2-1 0 10 =0 

3-36 00 =1 0 

A maximization LP is unbounded from above if there is 
a bfs and a non-basic variable xs such that 

1. The coefficient for xs is the z-row is negative, and 

2. All coefficients in the column for xs are ≤ 0. 28 

In the tableau form, the objective is written as 
z + 2x2 - x5 = 2. 

Unboundedness conditions when given a bfs in tableau form for a max 
problem: there is a negative coefficient in the z-row for some nonbasic variable xs. 
The column in the tableau for xs is nonpositive. 

For any specified value of xs, one can adjust the values of the current basic variables 
to provide a feasible solution.  One shows that the objective value is unbounded 
from above by letting xs approach infinity. 
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Is it 
optimal? 

Is the optimum 
unbounded 

from above? 

find an 
improved 

corner point 
solution 

NoNo 

maximize z =  -2x2 + x5 + 2 

subject to x1 = 3 – 6x2 - 1x5 

x3 = 4 – 2x2 – 2x5 

x4 = 1 + x2 + 2x5 

x1, x2, x3, x4, x5 ≥ 0 

An example 

The basic feasible solution (bfs) is: 
x2 = x5 = 0; x1 = 3, x3 = 4, x4 = 1, z = 2 

Can you find 
one or two 
solutions that 
are better than 
the bfs? 

Together we will 
figure out how to 
get improved 
solutions. 

In this example, one of the basic variables x5 has a positive coefficient in the 
objective function.  But the unboundedness conditions are not satisfied. 

If we make x5 a little larger than 0, we can adjust the current basic variables to give 
a feasible solution and this feasible solution will have a larger objective value than 
the current bfs. 

The larger that x5 is, the larger will be the objective value.  So, we want to make x5 
as large as possible so long as the other basic variables remain non-negative. 
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Finding improved solutions 

max z = -2x2 + x5 + 2 

st x1 = 3 – 6x2 - 1x5 

x3 = 4 – 2x2 – 2x5 

x4 = 1 + x2 + 2x5 

x1, x2, x3, x4, x5 ≥ 0 

We copied the equations so that there would be space to write the improved 
solutions. 



z + 2x2 – x5 = 0
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Improving Solutions: Tableau Version 
x1 x2 x4x3z x5 

-12 001 = 20 

1= 

= 

Find a non-basic variable 
with a negative coefficient in 
the z-row.  Set that variable 
to Δ, and keep all other non-
basic variables at 0. 

z = Δ + 2 
x1 = 3 - 1Δ 
x2 = 0 
x3 = 4 – 2Δ 
x4 = 1 + 2Δ 
x5 = Δ 

Choose Δ 
maximum 

= 

-2-1 0 10 0 

316 00 1 0 

22 1 400 0 

We could look for improved solutions by just guessing the value of x5.  But to do it 
systematically, we set it to Δ. As you can see, I am fond of using Δ as a parameter. 

Once we set it to Δ, we can see how the current basic variables vary as a linear 
function of Δ. We then choose Δ as high as possible so that all of the current basic 
variables are nonnegative.  In this case, we can let Δ be as large as 2.  If it were any 
larger, than x3 would be negative. 



Mira and Marnie’s M&M Adventure 

Mira and Marnie, two MIT undergraduates known as the 

M&M sisters, recently received a gift from their parents of 

2000 pounds of gray M&Ms and 6000 pounds of red M&Ms, 

the MIT colors. So, they decided to go into business selling 

large bags of “MIT M&Ms” for frat parties.  They can sell a 

bag with 3 pounds of red M&Ms and 2 pounds of gray 

M&Ms for $20.  They can purchase bags of 3 pounds of red 

M&Ms and 4 pounds of gray M&Ms for $30.  How many 

bags should Mira & Marnie buy and sell to maximize their 

profit. 

32 

M&Ms really can be bought in very large packages with quantity discounts, and you 
can choose the colors.  You can even have custom printing (e.g., I love 15.053).  See 
http://www.mymms.com 
for more details. 

http://www.mymms.com


Formulation as a linear program 

z	 Let x1 be the number of 7 pound bags purchased 
(in thousands) 

z	 Let x2 be the number of 5 pound bags sold (in 
thousands) 

z	 Measure the profit in $10,000s. 
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A 2-variable LP

maximize 
subject to 

z = -3x1 + 2x2 
-3x1 + 3x2 
-4x1 + 2x2 
x1 ≥ 0, x2 ≥ 0 

≤ 6 
≤ 2 

maximize 
subject to 

z = -3x1 + 2x2 
-3x1 + 3x2 +x3 
-4x1 + 2x2 + x4 
x1, x2, x3, x4 ≥ 

= 6 
= 2 

0 

z x1 x2 x3 x4 

34 

=-3 3 1 600 

3 -2 001 = 0 

2-4 2 0 10 = 

We first add slack variables x3 and x4.

We then express the equations in tableau form.

Note that the initial tableau is in canonical form, and there is a corresponding bfs.
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The two dimensional geometry 

1 2 3 4 

1 

2 

3 

4 

-3x1 + 3x2 + x3 = 6 -4x1 + 2x2 + x4 = 2 

number bought 

nu
m

be
r s

ol
d 

For this particular LP, the feasible region is unbounded, but there will be an optimal 
solution. 
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The two dimensional geometry 

1 2 3 4 

1 

2 

3 

4 

-3x1 + 3x2 + x3 = 6 -4x1 + 2x2 + x4 = 2 

-3x1 + 2x2 = -5 

The optimal solution will be x1 = 1 and x2 = 3. The slack variables will both be 0. 
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LP “canonical form” 
The initial tableau is already in canonical form. 

x1 x2 x4x3z 

= 6 

3 -2 001 = 0 

2= 

The basic feasible solution (bfs) for this basis is   
z = 0, x1 = 0, x2 = 0, x3 = 6, x4 = 2 

The basic variables are z, x3 and x4. 
The non-basic variables are x1 and x2. 

-3 3 1 00 

-4 2 0 10 
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LP Canonical Form and the bfs. 

The simplex method starts with a tableau in LP 
canonical form (or it creates canonical form at a 
preprocess step.)  

The first solution is the bfs for that tableau. 

The text 
treats z as 
a basic 
variable. 

= 

= 2 

6 

= 0 

We will discuss next lecture what to do if there is no obvious way of getting a 
tableau in canonical form. 

-3 2 001

-3 3 1 0

-4 2 0 1

0

0

-3 3 1 0

-4 2 0 1

0

0

3 -2 001

x1 x2 x4x3z

1 0

0 1

00

x4x3

1

0

0

z



-3 2 001

-3 3 1 0

-4 2 0 1

0

0

1 0

0 1

0

0

001

x4x3z
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For each constraint there is a basic variable 

Constraint 1: basic variable is x3 

Constraint 1 

Constraint 2 

-3 3 

-4 2 

3 -2 

= 

= 2 

6 

x1 x2 

= 01 

z 

Objective 
function. 

bfs 

x1 = 0; x2 = 0; 

x3 = 6; x4 = 2; 

z = 0 

00 

x4x3 

0 

0 

One basic variable is z 

Constraint 2: basic variable is x4 

1 0 

0 1 2 
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The simplex algorithm (for max problems) 
Start with a feasible 
corner point solution 

Is it 
optimal? 

No 

Yes 

We were lucky to be able to start with a feasible 
bfs. We now move on to the rest of the algorithm. 

Next lecture: how to find a starting bfs 



-3 2 001

-3 3 1 0

-4 2 0 1

0

0

1 0

0 1

0

0

001

x4x3z

41 

On the Optimality Conditions 

The cost-coefficient of x2 is -2. 

The current bfs can be improved if we can 
increase x2 and hold x1 at 0. 

z + 3x1 - 2x2 = 0 

3 -2 

= 

= 2 

6 

x1 x2 

= 000 

x4x3 

1 

z 

If x1 = 0, and 
x2 = 1, then 
z = 2. 

-3 3 

-4 2 

1 0 

0 10 

0 

z + 3x1 -2x2 = 0. 

We can find a better solution by increasing x2 above 0 and adjusting the current 
basic variables to get a feasible solution. 



-3 2 001

-3 3 1 0

-4 2 0 1

0

0

1 0

0 1

0

0

001

x4x3z
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If increasing x2 
improves the 
objective 
function, let’s 
make it as large 
as we can! 

Cleaver, and MIT 
Beaver Tim, the turkey 

But won’t 
we lose 
feasibility 
if we 
increase x2? 

3 -2 

= 

= 2 

6 

x1 x2 

= 000 

x4x3 

1 

z 

-3 3 

-4 2 

1 0 

0 10 

0 

Cleaver and Tim come right to the key issues. 



-3 2 001

-3 3 1 0

-4 2 0 1

0

0

1 0

0 1

0

0

001

x4x3z
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The Simplex Pivot 
The way to do it is 
to increase x2 while 
simultaneously 
modifying basic 
variables to maintain 
feasibility, It’s 
simple, but very 
clever. 

Cleaver 

-3 3 

-4 2 

3 -2 

= 

= 2 

6 

x1 x2 

= 000 

x4x3 

1 

z 

1 0 

0 10 

0 

I like Cleaver’s enthusiasm for this material. 

3 

2 -4 



But how do we 
know how much 
we can increase 
x2 by? 

Tim 

We don’t know.  So, 
we’ll set x2 to be some 
unknown parameter Δ. 
We’ll figure out the 
other variables in terms 
of Δ. And then we’ll 
make Δ as large as we 
can. 

Cleaver 44 

Tim is always asking good questions, even if he doesn’t know many of the answers. 



2 001

3 1 0

2 0 1

0

0

1 0

0 1

0

0

001

x1 x4x3z

-3

-3

-4

-3

-4

3
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The current basic feasible solution (bfs) 
is not optimal! 

z = 2 Δ. 
x3 = 6 - 3 Δ. 
x4 = 2 - 2 Δ. 

3 

2 

-2 

= 

= 

x2 

= 

1 0 

0 1 

00 

x4x3 

1 

0 

0 

z x1 

-3 

-4 

3 

Choose Δ as large as it can be so that 
all variables remain non-negative. 
That is, the solution stays feasible. 

Δ = 1 z = 2, x1 = 0, x2 = 1, x3 = 3, x4 = 0. 

2 

6 

0 

x2 = Δ 

x1 = 0, 
because we 
don’t change 
any other non-
basic variable. 



Sure. We’ll 
show it in 2 
dimensions. 

Can you show me a 
picture of this.  
I’m having trouble 
seeing what is 
going on. 

Tim 

Occasionally, I put myself into the lectures as well. 
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47 
1 2 3 4 

1 

2 

3 

4 

-3x1 + 3x2 ≤ 6 -4x1 + 2x2 ≤ 2 

max z = -3x1 + 2x2 
s.t -3x1 + 3x2 ≤ 6 

-4x1 + 2x2 ≤ 2 
x1 ≥ 0, x2 ≥ 0 

Bags bought 

B
ag

s 
so

ld
 

m&m 

Our initial solution 
was to do nothing. 
the simplex method 
then realized it could 
do better by selling 
bags.  But it could sell 
at most 1. 



Note that the solution x1 = 0 
and x2 = 1 is a corner point. 
It turns out that it is also a 
basic feasible solution. 

Ollie, 

the computationally


wise owl.


All bfs’s correspond to corner point solutions.  Ollie knew that, but decided to only 
tell you about a specific solution. 
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2 001

3 1 0

2 0 1

0

0

1 0

2 0 1

0

0

001

x1 x4x3z
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-3

-4
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Pivoting to obtain the bfs 

3 

-2 

= 

= 2 

6 

x2 

= 0 

1 0 

0 1 

00 

x4x3 

1 

0 

0 

z x1 

-3 

-4 

3 

z = 2, x1 = 0, x2 = 1, x3 = 3, x4 = 0. 

Non-basic 
variable x2 
becomes basic. 

Basic variable 
x4 becomes 
non-basic. 

Choose column 2. 

2 

0 

0 

1 

Next iteration, we want the column of x2 to be 

Since x2 replaces x4, the column for x2 after the iteration (pivot) will be the same as 
the column for x4 before the iteration (pivot).  In that way, we will still have 
canonical form after the pivot. 



2

-3 3 1 0

-4 0 1 2

6

2

3 -2 00

-z

0

0

1 0
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x1 

Pivoting to obtain a better solution 

= 

= 

x2 x4x3 

= 

1 

-1 0 0 1 2 

3 

z = 2 
x1 = 0 
x2 = 1 
x3 = 3 
x4 = 0 

New Solution: basic 
variables z, x2 and x3. 
Nonbasics: x1 and x4. 

1 

z 

-2 1 0 .5 

3 0 1 -1.5 

0 

0 

Note that the bfs after the pivot is exactly what we wanted.  By letting x2 = Δ and 
increasing Δ from 0 to 1, we were moving along an edge of the feasible region.  At 
the end of the edge is another corner point. 



Summary of Simplex Algorithm 

z	 Start in canonical form with a basic feasible 
solution 

1.	 Check for optimality conditions 

2.	 If not optimal, determine a non-basic variable 
that should be made positive 

3.	 Increase that non-basic variable, and perform a 
pivot, obtaining a new bfs 

4.	 Continue until optimal (or unbounded). 
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To do with 
your partner 

x1 x2 x4x3z 

1 =a 0 0 0 3 (2 minutes)


0 b 0 1 0 

0 c 1 0 0 

0 d 0 0 1 

= 

3 

6 

5 

The values a, 
b, c, and d are= unknown 

= 

1. What are the basic variables?  What is the current bfs? 

2. Under what condition is the current bfs optimal? 
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To do with 
your partner 

x1 x2 x4x3z 

1 =a 0 0 0 3 (3 minutes)


0 b 0 1 0 

0 c 1 0 0 

0 d 0 0 1 

=


=


=


3 

6 

5 

1. 	If we set x1 to Δ, what are x2, x3, and x4, all expressed in 
terms of Δ. 

2. 	Assume that b > 0 and d < 0.  Under what condition we 
will set Δ = 3/c? 

3. 	If Δ = 3/c, what coefficient do we pivot on next? 
53 

5 



54 

x1 

Recognizing Unboundedness 

= 

= 

x2 x4x3z 

1 =-1 0 0 1 

1 

2 

3 

z = 2 + Δ 
x1 = Δ 
x2 = 1 + 2Δ 
x3 = 3 + 3Δ. 
x4 = 0 

Δ can grow to ∞, and then z goes to ∞. 

z - x1 + x4 = 2 

If the non-cost coefficients in the entering column 
are ≤ 0, then the solution is unbounded 

0 

0 -2 1 0 .5 

-3 0 1 -1.5 



.5

1

-1.5
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Next: two more iterations. 

The cost coefficient of x1 in the z-row is negative. 
Set x1 = Δ and x4 = 0. 

x1 

= 

= 

x2 x4x3z 

1 =-1 0 0 

1 

2 

3 z = 2 + Δ 
x1 = Δ 
x2 = 1 + 2Δ 
x3 = 3 - 3Δ. 
x4 = 0 

Then Δ = 3/3. 

z - x1 + x4 = 21 

0 

0 -2 1 0 

3 0 1 

.5 

-1.5 



1

2

3

-2 1 0 .5

-1 0 0 1

3 0 1 -1.5

z =  2 + Δ
x1 = Δ
x2 = 1 + 2Δ
x3 = 3 - 3Δ.  
x4 = 0 

3
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30 1 2/3 -1/2 

30 0 +1/3 +1/2 

x1 

Another pivot 

= 

= 

x2 x4x3z 

= 

The largest value of Δ is 3/3. 

z = 3 
x1 = 1 
x2 = 3 
x3 = 0 
x4 = 0 

Pivot on the coefficient with a 3. 

10 1/3 -1/21 

Variable x1 becomes basic, x3 becomes nonbasic. 
So, x1 becomes the basic variable for constraint 1. 

0 

0 

1 



x1 = D 
x2 = 1 + 2D 
x3 = 3 - 3D.
x4 = 0 
z =  2 + D

57 

3 

3 

1 

0 1 2/3 1/2 

0 0 +1/3 +1/2 

1 0 1/3 -1/20 

0 

x1 

Check for optimality 

= 

= 

x2 x4x3z 

1 = 

There is no negative coefficient in the z-row. 

The current basic feasible solution is optimal! 

z = 3 
x1 = 1 
x2 = 3 
x3 = 0 
x4 = 0 

z + x3/3 + x4/2 = 3 

0 

0 



Two views of the simplex method 

z	 Improvement by “moving along an edge.” 

–	 Increase Δ, and increase z. 
– An approach used in other algorithms, and that 

shows what is going on. 

z	 Improvement by “moving to an adjacent corner 
point” 

–	Move to an adjacent corner point and increase z 

–	 It can be viewed as a “shortcut” 
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Summary of Simplex Algorithm Again 

z	 Start in canonical form with a basic feasible solution 

1.	 Check for optimality conditions  

z Is there a negative coefficient in the cost row? 

2.	 If not optimal, determine a non-basic variable that should 
be made positive 

z Choose a variable with a negative coef. in the cost row. 

3.	 Increase that non-basic variable, and perform a pivot, 
obtaining a new bfs (or unboundedness) 

z	 We will review this step, and show a shortcut 

4.	 Continue until optimal (or unbounded). 
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x1 

The Minimum Ratio Rule for determining 
the leaving variable. 

= 

= 

x2 x4x3z 

0 

0 

1 = 

-2 

1 

-3 0 0 0 3 

z = 3 + 2Δ 
x1 = Δ 
x2 = 6 - 3Δ 
x3 = 1 + 2Δ 
x4 = 5 - 2Δ 

Δ = min (6/3, 5/2).  At next iteration, pivot on the 3. 

ratio: RHS coefficient/ entering column coefficient 

s.t. entering column coefficient is positive 

z - 3x1 = 3 

= 

3 

0 

1 

0 

1 

6 

2 10 

0 

0 5 

0 0 



More on performing a pivot 

z	 To determine the column to pivot on, select a 
variable with a negative cost coefficient 

z	 To determine a row to pivot on, select a 
coefficient according to a minimum ratio rule 

z	 Carry out a pivot as one does in solving a system 
of equations. 
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Next Lecture:  More on the Simplex Algorithm 


